A New On-Chip Interconnect Crosstalk Model and Experimental Verification for CMOS VLSI Circuit Desig - Electron Devices, IEEE Transactions on

نویسندگان

  • Yungseon Eo
  • William R. Eisenstadt
  • Ju Young Jeong
چکیده

A new, simple closed-form crosstalk model is proposed. The model is based on a lumped configuration but effectively includes the distributed properties of interconnect capacitance and resistance. CMOS device nonlinearity is simply approximated as a linear device. That is, the CMOS gate is modeled as a resistance at the driving port and a capacitance at a driven port. Interconnects are modeled as effective resistances and capacitances to match the distributed transmission behavior. The new model shows excellent agreement with SPICE simulations. Further, while existing models do not support the multiple line crosstalk behaviors, our model can be generalized to multiple lines. That is, unlike previously published work, even if the geometrical structures are not identical, it can accurately predict crosstalk. The model is experimentally verified with 0.35m CMOS process-based interconnect test structures. The new model can be readily implemented in CAD analysis tools. Thereby, this model can be used to predict the signal integrity for high-speed and high-density VLSI circuit design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of coupling effects by optimizing the 3-D configuration of the routing grid

In this brief, we propose a new physical design technique for a subquarter micrometer system-on-a-chip (SoC). By optimizing the individual layer’s routing grid space, coupling effects such as crosstalk noise, crosstalk-induced delay variations, and coupling power consumption are almost eliminated with little runtime penalty. Experiments are performed on the design of an image processing circuit...

متن کامل

Comprehensive Evaluation of Crosstalk and Delay Profiles in VLSI Interconnect Structures with Partially Coupled Lines

In this paper, we present a methodology to explore and evaluate the crosstalk noise and the profile of its variations, and the delay of interconnects through investigation of two groups of interconnect structures in nano scale VLSI circuits. The interconnect structures in the first group are considered to be partially coupled identical lines. In this case, by choosing proper values for differen...

متن کامل

TRANSIENT AND DELAY ANALYSIS FOR ON-CHIP HIGH SPEED VLSI RLCG INTERCONNECTION NETWORK IN 0.18μm TECHNOLOGY

In this paper, the time domain waveform is approximated for calculation of delay, rise, settling time, damping ratio and natural frequency of a second order RLCG on-chip VLSI interconnect line. It can also be evaluated for multiple interconnect systems but due to harmonics higher order systems are ignored. The model is applied to a single RLCG interconnect line which can also be extended for mu...

متن کامل

New Method for Analysis of image sensor to produce and evaluate the image

In this paper, a new method for evaluating CMOS image sensors based on computer modeling and analysis is introduced. Image sensors are composed of different parts, each of which has a specific effect on image quality. Circuits of image sensors can be evaluated and analyzed using circuit simulators or theoretically, but these methods cannot help to produce the final image. In order to produce th...

متن کامل

Capacitor-couple ESD protection circuit for deep-submicron low-voltage CMOS ASIC

Capacitor-couple technique used to lower snapbacktrigger voltage and to ensure uniform ESD current distribution in deep-submicron CMOS on-chip ESD protection circuit is proposed. The coupling capacitor is realized by a poly layer right under the wire-bonding metal pad without increasing extra layout area to the pad. A timing-original design model has been derived to calculate the capacitor-coup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000